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ABSTRACT 

The structure theory for simplex spaces is extended to arbitrary real Banach 
spaces with LLduals. 

1. Introduction 

It has long been known that the structure of an operator algebra and its repre- 

sentations is reflected in the convex structure of its state space. In the past five years 

this has led to new methods for studying convex sets (see [3, 23]). This progress 

was in part inspired by Kadison's early investigation of "function systems" [14]. 

These may be used to realize any compact convex subset of a Hausdorfflocally 

convex space as the "state space" of a certain ordered Banach space. As would be 

expected, the most detailed theory has been developed for the simplest class of 

convex sets, the Choquet simplexes (see [10, 11, 12, 13, 22]). Recently Lazar and 

Lindenstrauss [17, Th. 2.1] have shown that one of the basic results of the latter 

theory, the Edwards Extension Theorem, generalizes to certain, non-ordered 

Banach spaces, which we shall call "Lindenstrauss spaces". These are the Banach 

spaces with dual an Ll-space. In this context the unit ball of the dual plays the 

role of  the state space. We shall show that almost the entire existing structure 

theory of Choquet simplexes carries over to the Lindenstrauss spaces. 

At several points in this development it would have been convenient to appeal to 

the Cartier Meyer Dilation Theorem [20, p. 232]. Since the non-separable form of 

this result is known only for simplexes, it has been necessary to prove a new result 

in this direction. In Theorem 2.1 it is shown that the Cartier Lemma (see [21, 

Prop. 13.1]) may be strengthened to allow approximation of maximal dilations of 

measures by maximal dilations of  point masses. 
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The maximal Cartier Lemma is first used to give a new solution of a boundary 

value problem for a compact convex K. Specifically, a characterization is given in 

Theorem 2.3 for those functions on the closure of the extreme points of  K that 

extend to continuous affine functions on K. This differs from the Alfsen criteria [2-1 

and those of Boboc and Bucur E6] in that it avoids the use of  envelopes or non- 

extremal measures. 

Next we consider the representation of a Banach space V as functions on Z, the 

closure of the extreme points E(K) of the dual ball K. Due to Lazar's recent 

measure-theoretic characterization of Lindenstrauss spaces [16-1, such spaces have 

a particularly simple representation as all of  the odd 'affine' functions on Z 

(Corollary 3.3). 

In §4 we show that if Visa Lindenstrauss space, then one may introduce a "struc- 

ture topology" on E(K). After an identification of antipodal points, this may be 

regarded as the analogue of the primitive ideal space of a C*-algebra or of the 

maximal ideal space of a simplex. A closed set in this topology is just the extreme 

points of a closed "biface" in K. The key result is that the convex hull of two 

bifaces is again a biface (Proposition 4.6). This is based on a non-ordered form of the 

Riesz decomposition property that holds for L-spaces (Lemma 4.4). 

In Theorem 5.7 we use the representation theorem for a Lindenstrauss space V 

on Z to prove that structurally continuous functions on E(K) act as "multipliers" 

for V. This is a generalization of the Dauns-Hofmann Theorem for C*-algebras, 

which as Fell has pointed out may also be proved via a representation theorem for 

C*-algebras (see [ t ,  §4]). "Symmetrically dilated" sets are then introduced, and 

using the maximal Cartier Lemma a second time, it is proved in Theorem 5.8 that 

their convex hulls are bifaces. This leads to a characterization of  the structurally 

closed sets. The material of  § 5 is based on a careful analysis of  certain maximal odd 

measures on K. 

In § 6 we show that if V is a separable Lindenstrauss space, then the following 

properties are equivalent: (1) E(K) has Hausdorff structure (after identification of 

antipodes), (2) the closure Z of  E(K) is contained in the "extremal diameters", 

and (3) V is a G-space. 

Finally in Theorem 7.7 we prove that the Gleit-Taylor Theorem [13; 22-1 gener- 

alizes without change: If Vis a separable Lindenstrauss space, then for the struc- 

ture topology the properties of first countable, second countable, and local com- 

pactness are equivalent. 
In § 8 we discuss some open problems and directions for further work. 
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I am indebted to E. Alfsen for many invaluable discussions on this material, and 

his hospitable invitation to conduct this research at the University of Oslo. I wish 

to thank A. Lazar for introducing me to the theory of Lindenstrauss spaces, and 

providing me with preprints of [16] and [17]. Finally I thank R. Phelps who 

clarified for me certain results in a preliminary version of [17]. 

2. Dilations and boundary value problems 

Throughout this paper we shall use the following notation. If  X is a compact 

Hausdorff space, C(X) is the ordered Banach space of real continuous functions 

on X, with the usual order and uniform norm. M(X) is the ordered Banach dual 

of C(X), the regular Borel signed measures on X. Both C(X) and M(X) are lattice 

ordered, and we let A, V, +, - be the usual lattice operations. We let P(X) be the 

probability measures on X, i.e., the/~ e M(X) with # > 0,/t(1) = 1. We let 6~ = 6(x) 

be the unit mass concentrated at x. If  # ~ M(X), we indicate its support by supp/~. 

Let K be a compact convex subset of a locally convex Hausdorff space IV. A 

face Q in K is a convex subset of K such that if ~p + (1 - c0q e Q, 0 < e < 1, 

p, q E K, then p, q e Q. A point p in K is extreme if and only if {p} is a face in K. 

Let E(K) be the extreme points of K, and Z = Z(K) be the closure of  E(K). Let 

S(K) c_ C(K) be the wedge of convex functions s in C(K), i.e., those functions s with 

s(o~p + (1  - ~ ) q )  _<_ as(p) + (1  - oOs(q) 

p, q ~ K, 0 <_ ~ < 1. A(K) = S(K) c~ - S(K) consists of the affine continuous 

functions on K, i.e., those functions a ~ C(K) satisfying 

a(c~p + (1 - e)q) = ea(p) + (1 - e)a(q) 

p, q e K, 0 < e < 1. The dilation order on P(K) is defined by # -< v if/~(s) _<_ v(s) 

all s ~ S(K). If/~ e P(K), the resultant r(#) is that unique point in K with/~(a) 

= a(r(p)) all a ~ A(K). If/~ -~ v, then r(#) = r(v), and given any # e P(K), there is 

a maximal v with/~ ~ v. If v is maximal, then supp v ~ Z. 

We identify P(Z) with the # e P(K) for which supp # ~ Z, hence the notions of  

dilation and resultant are defined on P(Z). We define a function b e C(Z) to be 

affine on Z, if b(z) = 2(f) whenever 2 e P(Z) is a maximal measure with r(2) = z 

(recall that maximal measures lie in P(Z)). We let A(Z) be the closed subspace of 

affme functions in C(Z). 

The following is an improvement of a result of  Cartier (see [21, Prop. 13.1]) in 

which the maximality conditions were not included. The upper, lower envelope 

technique was introduced by Alfsen and Skau in another situation where one 
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wanted a Krein-Milman type theorem without the usual compactness hypotheses 

(see [4-]). 

THEOREM 2.1. Suppose that C is a compact  subset o f  K.  Define subsets S and 

T o f  P(K)  x P(K)  as fol lows:  

S = {0t, v): # -< v, supp It c C, v maximal}, 

T = {(6p, 2): p = r(2), p ~ C, 2 maximal}. 

Then  S is contained in the weak* closed convex hull o f  T. 

PROOF. Suppose that  the conclusion is false. F rom the Hahn-Banach Theorem, 

there exists a weak* continuous linear functional L on M ( K )  x M ( K ) ,  a pair 

(/,, v )e  S, and a constant  ~, with 

L(ap, 2) < ~ all (6~, 2) ~ T, 

L(it, v) > c~. 

There exist cont inuous functions f ,  g e  C(K)  with L ( ~ , f l ) =  ~ ( f ) -  fl(g) for  all 

(G fi) ~ M ( K )  x M(K) .  Thus 

f ( p )  - 2(g) __< c~ all (6p, 2) ~ T, 

I.t(f) -- v(g) > c~. 
The family 

°a' o = {u E - S(K):  u > g} 

is directed downwards,  and the upper envelope for g is defined by 

R = inf  % = lim {u: u ~ %} .  

Since 2 and v are maximal, 

f ( p )  - 2(4) =< c~ all (6p, 2) ~ T, 

~ ( f )  - v(g)  > ~.  

We have 

v(~) = lim {flu): u e %} ,  

hence we may select u ~ - S (K)  with u > g and 

(2.1) f ( p )  - 2(u) =< ~ all (6v, A)e T, 

(2.2) I t ( f )  - v(u) > o~. 

Since u is concave and continuous,  if we let u_ be the lower envelope, of  u, i.e., the 

supermum of  v in S(K)  with v < u, we have that  
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_u(p) = inf{2(u): (6p, 2) ~ T} 

(see [21, Prop. 3.1].) From (2.1), 

f (p) - ~ < u(p) all p ~ C, 

hence since u is convex, #-< v, and v is maximal, 

p( f )  -- ct <= I~(U) <= v(u) = v(u). 

This contradicts (2.2). 

LEMMA 2.2. Suppose that b ~ A(Z), and that tl, v ~ P(Z) are such that # ~ v. 

Then #(b) = fib). 

PROOV. Since in the general case we may choose 0 maximal with p -K v -K 0, it 

suffiices to assume that v is maximal. Let C = Z in the statement of Theorem 2.1. 

We may regard S and Tas subsets of P(Z) x P(Z) with the weak* topology induced 

by C(Z) x C(Z). Define a function F on P(Z) x P(Z) by F(#, v) = #(b) - v(b). 

Then F is weak* continuous and affine. Since b is affine on Z, F is zero on T, and 

thus on the convex hull of T. From Theorem 2.1, it follows that F is zero on S. 

THEOREM 2.3. A function f c C(Z) will lie in A(K) if and only if 

(1) f ~  A(Z), i.e., 2 maximal and r(2) = z e  Z imply 2(f)  = f ( z ) ,  

(2) if  vl and v2 are maximal probability measures with the same resultant, then 

v l ( f )  = v2(f). 

PROOF. The necessity of these conditions is obvious. Conversely suppose that f 

satisfies (1) and (2). It suffices to prove that if 0 ~ M(Z) annihilates A(K), then 

O(f) = 0 .  Let 0 =  0 + -  0- be the Hahn decomposition for 0. Then since 

0(l) = 0, 0+(1) = 0-(1) and we have that 0/0+(1) =/~l -/~2 where/~1,/~2 ~ P(Z). 

Since /~1 I A(K) =/~2 I A(K), r ( # l ) =  r(/z2). Let vl and v2 be maximal with 

tq ~( vl, P2 ~ v2. From Lemma 2.2 and (2) 

~Ll(f) --/,t2(f) = vl ( f )  -- v2(f) ---- 0 

hence O(f)= 0, and the theorem follows. 

REMARK. The problem of determining which functions on E(K) extend to 

elements of A(K) was solved by Alfsen in [2]. Boboc and Bucur [6] recently proved 

a result that characterizes which functions in C(Z) extend. The above theorem 

differs from [6] in that one only need use maximal measures in (1). Specifically, 

the Boboc and Bucur Theorem invokes the (formally) more restrictive class AI(Z) 

of all f e  C(Z) such that 2~P(Z)  and r ( 2 ) = z  e Z imply 2 ( f ) = f ( z ) .  Their result 
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is closely related to the theorem of [-2], since as Alfsen has pointed out to me, the 

functions considered in [2] are just those uniformly continuous functions on E(K) 

whose continuous extension belongs to AI(Z). The above refinement will play an 

important role in the proofs of Corollary 3.3 and Theorem 5.7 and 6.3. 

3. Lindenstrauss spaces 

Let V be a real Banach space, and K the closed unit ball of V* with the weak* 

topology. We define an affine homeomorphism cr of K by or(p) = - p .  It is clear 

that E(K) and thus Z are iuvariant under a. We let C,(K) be the closed subspace of 

odd functions in C(K), i.e., those f ~  C(K) for which f ( ~ r p ) = - f ( p ) ,  and we let 

A,(K), C,(Z), and A,(Z) be the corresponding subsets of A(K), C(Z), and A(Z), 

respectively. We define a map F of V into C(K) by F(v) (p) = p(o). 

LEMMA 3.1. F is an isometry of V onto A~(K). 

PROOF. F is trivially an isometry. That it is onto is a consequence of [15, Lemma 

4.3]. 

We shall identify V and A,(K). 

We define order and norm preserving transformations cr on C(K) and C(Z)by 

a(f)  (p) =f(ap).  This induces corresponding transformations a of M(K), M(Z), 

and P(K) by (cr#)(f)= #(~f).  We define for f and p, odd f =  ½ ( f - o - f ) ,  odd 

We recall that a Kakutani L-space is a vector lattice W with a norm satisfying 

(3.1) liP + qil = IlplI + 1[ qil, p,q  w +  

(3.2) l[ p+ II + It p-l[ = I[ p [I. 
A Banach space V i s a  Lindenstrauss space if V* is isometric to an L-space W. We 

will generally regard V* as itself an L-space. For the simplest examples, suppose 

that X is compact Hausdorff. Then M(X) is an L-space, C(X) a Lindenstrauss space. 

The equivalence ( 1 ) ~ ( 3 )  of  the following Theorem is due to Lazar [16]. We 

feel that the interpolation of  (2) in the proof  will help to clarify the geometric 

significance of the result. 

THEOREM 3.2. Let V be a real Banaeh space, K the closed unit ball of V*. 

The following are equivalent: 

(1) V is a Lindenstrauss space. 

(2) I f  lq and IZz are discrete probability measures on K with r(#x) = r(p2), then 

there are discrete dilations v i of/z i, i = 1,2, for which odd v 1 = odd •2. 
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(3) I f  vl and v 2 are maximal  probability measures on K with r (vl )= r(v2), then 

odd vt = odd v2. 

PROOF. (1) =~ (2). Let Q be the positive elements of  norm 1 in K. Then K is 

the convex hull of  Q a n d  - (2.  To see this, suppose p E K, and let q be an arbitrary 

element of (2 with II q II = 1 Then the following is a convex decomposition of  p: 

p = II p+ p+ 4:- II p- 

If  p+ or p -  = 0, we simply delete that term in the sum. 

Suppose that 

#1 = ~ aiSp,, #2 = ~ bj6q, 
i = 1  j = l  

where Pi, q y z K ;  0 < ai, by; and ~a~ = ~ bj = 1. 

Letting p = r(~q) = r(g2), we have 

(3.3) p =  ~ a,pi= ~ byqy. 
i = 1  j = l  

tl 
Choose scalars 05i, f l j  with 0 <= ei, fli -<- 1 and p~, p[, q}, qJ in Q with 

t 
Pi = eiPi 4:- (1 - 0h) ( -  p[),  

q j  = flyq~ 4:- ( 1  - -  f l y ) ( - -  q'j). 

From (3.3) we have 

a~iP[ + 
i = 1  

b j ( 1 -  fli)q] = ~ a i ( 1 -  ~i)Pj + ~ bjflyq~. 
j = l  i = 1  j = l  

Since the positive cone of  V* is lattice ordered, it satisfies the Riesz decomposition 

property (see [-21, Lemma 9.1]). It follows that there exist r~,j > 0 with 

m+n 
aieip ~ = • rik i = 1, . . . ,m,  

k = l  

m-l-n 

b j ( 1 -  flj)@ = E Fro+j,  k j = l , . . . ,n ,  
k = l  

m + n  

ai(1 - -  ~i )P~ = E rk,~ i = 1 , . . . , m ,  
k = l  

ra A- tt 

bjfljqj = ~, rk,m+ j j = 1,. . . ,n.  
k = l  
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We m a y  select s~ j ~ Q and scalars c,.j > 0 with r,.j = ci.js, i. Then  f rom additivity 

o f  the norm,  

k 

1 -- f l j  = X Cm+ly k/bly 
k 

1 - ~ i  = Z Ck.i/a i 
k 

fly = Z Ck,m+ly/bly 
k 

In particular 

Pi = v~ 
k 

Ci,kai Si k + "~(-- Sk.3 

Cm+j,k[ ~ "~ Ck,m+ly. 
qj = ~ "-~ly k--Sm+ly k) + "--~--j ~k m+j 

provide convex decomposi t ions  o f  p, and qly" 

We let 

v .  = Z c.k ~(siD + ck,i ~(-sk.~ 
k al a~ 

Cm + j ,k  Ck,m +j 

and vl = ~ i a i  v~i, v2 = ~.jblyv2 j. Then since r(vli) = Pi and r(v2j) = q j, we conclude 

Pl = vZ ai3(Pi) "~ vl, 

On the other hand 

[A 2 = ~ bl~(q j)  < v2. 
l 

Vl--'--O 1 "['-2 

V 2 = 0 2 + 2  

where 

01 

0 2 = 

~, e~ j[3(s~.j) + ,5(-s~ i)-I 
i . j = l  

m-l-n 

2 c, j[~(s, j) + ~(-s , j ) ]  
i j=m+ l 

l a+n  

X X [c,.p(~,.j) + cj,~(-si,)]. 
/=1 j=m+l  
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We have odd 0¢ = 0, hence 

odd vl = odd 2 = odd v 2. 

(2) ~ (3). Let/11~ and ~2a be nets of  discrete measures converging weak* to v 1 

and v2, respectively. For  each oe choose vl~ N #1~, v2~-  #2~, with odd v1~ -- odd 

v2~. We claim that v1~ converges to v~. Let v~ be a limit of  a convergent subnet vta. 

If  s is convex and continuous, vla(s ) > #l#(s). It follows that v~(s) > vl(s), i.e., 

vl 5- yr. Since v I is maximal, vl = vl, and from the compactness of  PI(K),  the 

convergence assertion follows. Similarly v2~ converges weak* to v 2. Since for any 

measure v, odd v ( f ) =  v(odd f ) ,  odd is weak* continuous. It  follows that odd 

v 1 = odd v 2. 

(3) ~ (1 ) .  See [16]. 

COROLLARY 3.3. I f  V is a Lindenstrauss space, then V = A,(Z).  

PROOF. From Lemma 3.1, we must show that A,(Z) ~_ A,(K).  Choose f ~  A,(Z). 

I f  vl and Vz are maximal probability measures with r(v~) = r(v2), we have from (3) 

of  Theorem 3.2 that odd vl = odd v 2. Since f is odd, 

v1(f) = odd v1(f) = odd vz(f) = v2(f). 

From Theorem 2.3, f~A~(K) .  

4. Bifaces and the structure topology 

Let V be a Lindenstrauss space, K the closed unit ball of  V*. Lazar and 

Lindenstrauss showed that theorems about the face of  a simplex will generalize 

to K if one considers the symmetric convex set generated by a face. A more trans- 

parent theory results if one uses the equivalent notion of a "bi face"  of  K. The 

latter is defined by means of a weak ordering that exists in any normed linear space. 

Suppose that W is a normed linear space. We say that p, q e W are without 

cancellation, and write p lq, if ]l P + q II -- 11 p II + II q 11 We say that r ~ W domin- 

ates p, and write p -< r, if r = p + q where Pl q" I f  p -< q -< r, then p -< r. If p -< q 

and q -< p, 

I[ q [I = IIP II + II q - P l[ 

= ¢lqll + l i P - q I I  + I I q -  Pll 

hence p = q. If  e is any scalar, then p -< q implies cop -< ccq. I f  p -< q and q ] r, then 
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l) P + r  l1 + II q -- P II ~ 11 q + r  [j 

= I[q[I +j l  rl[ 

= 1l p II + II q - p 11 + II r II, 
hence, p I r. One does not  have that  p -< q implies p + r -< q + r, 

I f  Wis an L-space, then f rom (3.1), P lq for  any p, q ~ W +, i.e., 0 < p < r implies 

p -< r. F rom (3.2), if  p is any element of  141, we have p+ I - P - ,  hence p+ ~( p and 

- p -  -<p. I f  p, q > 0, then since (p - q)+ = p - p Aq and (p - q ) -  = q - p A q, 

[ I p - q l [  = [ l p - p A q [ l + l l q - p A q H  

= ][pll + ] l q l 1 - 2 l i p  AqII, 
and it follows that  p I ( -  q) i f  and only if p A q = 0. In general, 

LEMMA 4.1. Suppose that W is an L-space, and p, q e W. Then the following 

are equivalent: 

(1) Plq 
(2) p + A q - = p - A q  + = 0  

(3) (p + q)+ = p+ + q+ and (p + q)-  = p -  + q - .  

PROOF. (1) =~ (2). I f  p I q' then since p+ -< p and - q -  -< q, p+ j - q - ,  and 

from above, p+ A q -  = 0. A similar argument shows that  p -  A q+ = 0. 

(2) =~ (3). In general we have that  a A b = 0 implies that  

F rom (2) we have 

( a - b ) +  = a - a  A b = a  

( a - b ) - = b - a A b = b .  

(p+ + q+) A (p- + q-) = 0. 

Since p + q is the difference o f  these terms, 

(P + q)+ = p+ + q+, 

( p + q ) -  = p -  + q - .  

(3) =~ (1). We have 

H P + q ]1 = [](P + q)+[] + [[(P + q)-[I  

= I1 p + + q +11 + I1 p -  + q-11 

= II p+ll + II q+[I + I1 p-II + 11 q-I[ 

-- il p II + II q il. 
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COROLLARY 4.2. Suppose that W is an L-space, and p, q E W. Then p -< q 

if  and only if  p+ <_ q+ and p -  <= q- .  

PROOF. We have p -< q if and only if p [ q - p, i.e., from (3), if and only if 

q+ = p+ + (q - p)+ 

q -  = p -  + ( q -  p) - .  

If  the equations hold, q+ > p+ and q-  > p - .  Conversely i fq  + > p+ and q -  > p - ,  

then 
(q - p)+ = ((q+ -- p+) - (q-  -- p-) )+ = q+ - p+, 

and similarly, (q - p) -  = q -  - p - .  

LEMMA 4.3. Suppose that W is an L-space, and p, q ~ W. Then there exist p~ 

and q~ with Pl "< P, q: "< q, Pl l q~ and 

P + q = P l + q l .  

PROOF. We have that 

p + q  

where 

= p + - q - + q + - - p -  

= Pl + q~, 

e l  = ( p +  - q - ) +  - ( q +  - p - ) -  

ql = (q+ "- P-)+ -- (P+ -- q - ) - -  
We have 

p+ _< (p+ -- q- )+ < p+ 

P7 < ( q +  - - P - ) -  < P - ,  

hence from Corollary 4.2, Pl "<P. A similar calculation shows that ql -< q. From 

(2) of  Lemma 4.1, it is immediate that Pl [ql. 

LEMMA 4.4 (Rmsz D~COMPOSmON PROP~Ra'Y). Suppose that W is an L-space, 

and that p, qt, q2 ~ W are such that 

P "< ql + q2, ql [ q2. 

Then there exist Pl and P2 with 

P = Pt "-I- P2, P~ ~ qc 

PROOF. From Corollary 4.2 and Lemma 4.1 (3), 

P + < ( q t + q 2 )  + = q +  + q +  

P- --<- (ql -t- q2)- = q l  + q2- 
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Since W is lattice ordered, it satisfies the usual Riesz decomposition property (see 

[,21, Lemma 9.1]), hence there exist r l ,  r2, sl, s2 with 

p + = r l + r 2 ,  O<~r~<=q + 

p -  = st q- S2, O < si < qi-. 

Letting Pt = rt -- st, we have p = p~ + P2. Since 

r t A s t  < q +  A q i - = O ,  
we have 

hence Pt "< qt. 

p+ = r, = < q+ 

P7 = st < q;- 

Suppose that W is a normed space, and K is its closed unit ball. A non-empty 

subset H of  K is a biface in K if 

B 1 • H is convex and symmetric. 

B z • I f  x ~ 0 is in H, then so is x/[] x II. 
B 3 • I f  q ~ H and p -< q, then p ~ H. 

It  is readily verified from B 1 and B z that H must be the unit ball of  the normed 

space lin H, the linear span of  H. Thus we may consider bifaces in H. Any biface in 

H is a biface in K. I f  p E E(K), then the reader may verify that the extremal diameter 

Hp = [ - -  p, p] is a biface in K. I f  Q is a face in K, the convex hull of  Q and - Q 

need not be a biface (consider the hexagon), although this is the case if W is an 

L-space. A. Lazar has pointed out to the author that every non-zero biface of  an 

L-space arises in this manner. We will not need these simple results. 

LEMMA 4.5. Let K be the unit ball of a normed linear space W. I f  H v ~ {0} 

is a biface in K,  then E ( H ) c  E(K).  

PROOF. Suppose that p ~E(H),  and 

p = e q + ( 1 - e ) r , q ,  r c K ,  0 < ~ < 1 .  

Since [[ p ][ = 1 >- [] q I[, [[r ][, we have ~q[(1 - ~)r, hence from B 3 and B2, ~q e H, 

and q s H. Similarly r ~ H,  and we conclude p = q = r. 

The intersection of  bifaces is again a biface. The convex hull o f  bifaces is in 

general not a biface (consider the hull of  two extremal diameters in a hexagon). 

PROPOSITION 4.6. Let K be the unit ball of  an L-space W. I f  H1 and H2 are 

bifaces in K,  so is the convex hull H = c(Hj, H2). 
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PROOF. H trivially satisfies B 1. I f  p E H, we have p = el Pl + e2 P2, el + e2 = 1, 

e~ > 0, and Pi s Hi. It  follows that ei P~ E Hi. From Lemma 4.3 we may choose 

qi"<~iPi with q l lq2  and P = q l  + q2. Thus qi/llq, II~Hi, 

 _[Iq ll IIq21i q2 ~H, 

11 p II II p !I II II + !t p II II II 
and we have B z. Finally, if  0 • r -< p, then from Lemma 4.4, there exist r~ <~ q~ 

with r = r t + r2. Since r l Jr2, r/[] r [] e H (see the above calculation), and r ~ H. 

In the remainder of  this section, Vwill be aLindenstrauss space and K, the unit 

ball of  V*. I f  H~ ¢ {0} and Hz ¢ {0} are weak* closed bifaces in K, the same 

is true for H = c(Ht, Ha) , and since Hi is a biface in H, we have 

E(H) = E(H1) LI E(H2). 

I f  H~ are weak*-closed bifaces and {0} ~ H = n H~, then 

E(H) = C~E(H~). 

We may thus define a subset F of  E(K) to be structurally closed if F = E(H), 

H ~ {0} a weak* closed biface, or if  F = ~ .  Points in E(K) are never closed in the 

structure topology, since an exteme point can never be separated from its 

negative. For  convenience of  terminology, we define E,(K) to be the sets 

{p, - p} with p ~ E(K), and we define the structure topology on E,(K) to be the 

quotient topology. Since the sets Hv, p ~ E(K) are bifaces, points in E,(K) are 

closed. 

I f  p is an arbitrary point in K, we let H v be the smallest weak* closed biface 

containing p. We conclude this section with some simple properties of  the structure 

topology. 

PROPOSITION 4.7. I f  a net p~ in E(K) converges to a point p ~ K, p ~ 0, then 

p~ converges in the structure topology to each q e E(Hp). 

PROOK Suppose that q ~ E(Hv) and that  p~ does not converge to q. Then 

there is a subnet pp and a structure closed set F with pp e F, q ~ F. Letting F = E(H), 

H a weak* closed biface, pp e H imply that p e H, hence q e E(H v) ~_ E(H), a 

contradiction. 

PROPOSITION 4.8 (see [13, p. 43]). If  f is a continuous, convex function on K 

with f(O)= O, then the restriction fIE(K) vanishes at o% i.e., for each c > O, 

the set 
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D = {p E E ( K ) : f ( p )  > c} 

is structurally compact. 

PROOF. Let p, be a net in D. Then let p~ be a subnet converging weak* to 

q ~ K. Since f is continuous, f ( q )  > c, and in particular q ¢ 0. Since f is convex, 

f l  Hq will assume a maximum value at some point p ~ E(Hq) (see [5, p. 7]), i.e., 

f ( p )  > c, and p ~ D. From Proposition 4.7, pp converges structurally to p. 

PROPOSITION 4.9. I f  v ~ l/, then the set 

{p~g(g): I~(P)l = 11 ~ll} 
is structurally closed. 

PROOF. I t  suffices to show that 

H = ~p ~ K= [~(P) I = II~ II II p II} 
is a bifacel I t  is clear that H satisfies B x and B a. I f  q <~ p ~ H, then letting p = q + r 

the inequalities 

[~'(q)] --< ]l ~ II II q 11 

I~(ol z II~ ii I1~ II 

imply that Iv(q)[ 

11~ I[ (ll q 11 + Ilr I]~ 

= [Iv 11 II q I1 

= II~ll [Iq +rl l  

= I~(P)I 

r v(q)l + I~(r)l 

5. Continuous multipliers and symmetrically dilated sets 

In this section, Vwill be a Lindenstrauss space, K the closed unit ball of  V*. 

I f  0 is an odd signed measure on K, i.e., aO = - 0, a simple argument with the 

Hahn decomposition for 0 will show that nO+= 0- ,  hence 0 = odd (20+). I f  

p ~ K, we define 

o)~ = 2(odd p)+, 

where/~ is any maximal probability measure representing p. This is well-defined 

by Lazar 's  criterion (Theorem 3.2). We note that for v ~ V, o)p(v) = v(p), and 

( 5 . 1 )  0 =< % = ( ~  - ~r~) ÷ = ~ - ~ A a ~  5- ~.  

LEMMA 5.1. I f  0 <-- C < 1, then o)c, = co),. 
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PROOF. Suppose that  g is a maximal probability measure with resultant p. Let 

q be an arbitrary element in E(K). Then 

v = c/2 + ½(1 - c ) (6~ + 6_q)  

is a maximal probability measure with r(v)= cp. We have a(6q)= 6_q, hence 

odd v = c odd/2, and 

coop = 2(odd v) + = 2c(odd/2) + = cop. 

We let M-~(K) be the measures p with/2 > 0, I[/2 [1 < 1. If/2 ~ M+(K) we define 

the resultant, r(/2) to be the unique p e K with/2(v) = v(p) for all v e V. In particular 

r(cop) = p for each p e K. We say that/2 is maximal if/2 # 0 and/2/t[/21[ is a maximal 

probability measure, or/2 = 0. If/2 is maximal, and 0 < v < tz, then v is maximal. 

This is a consequence of  the fact that  the maximal probability measures form a 

face in P(K), (this is clear from ]-21, Prop. 9.3]), and if/2 ¢ 0, 

/2 il v 11 v ll /2-vll  / 2 - v  
11/211 -=  11/211 llvl~l + 11/21~ [I/2-~ II 

From (5.1) cop must be maximal for each p ~ K .  

L E ~ A  5.2. Let O EM~(K) be maximal and p = r(O). The following are 

equivalent: 

(1) 0 = cop 

(2) [! 0 [I = II p II 
(3) 0 A a 0 = 0 .  

PROOF. Let q be an arbitrary element of  E(K). Then 

0 
/2= I101r i!Tll + ½(1-11011)(a~ + a - O  

is a maximal probability measure with r(/2) = p (delete the first term if 0 = 0). Thus 

(5.2) co, = 2(odd/2) + = (0 - ~r0) + = 0 - 0 A aO. 

The equivalence of  (1) and (3) is thus immediate. Since p is just the restriction of  

co, to V, II P [1 -<- 11 cop I[" On the other hand from Lemma 5.1, if p # 0, 

II co, II = II P II It co,,*,,,, II =< IIP II" 

I f  p = 0, then choosing q as above, 

co, = 2(odd ½(6. + 5_q)) + = O, 

and in general, II co, I] = li P ]]" Since 
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II0 - 0 A ~0 II = II 0 II - It 0 A ~0 II, 

the equivalence o f  (2) and (3) follows when one takes the norms  in (5.2). 

COROLLARY 5.3. I f  p, q, p + q ~ K ,  then p[q  i f  and only if  cop+q=cop+coq. 

PROOF. cop + coq is a max imal  measure,  and r(cop + coq) = p + q. Thus  cop + % 

= cop+q i f  and only i f  

II cop + ~o~ II = II p + q II, 

or  equivalently,  II p [I + II q II = II p + q 11, i . e . ,  p[q. 

COROLLARY 5.4. I f  p, q ~ K,  then p -< q if  and only if  c% < % .  

PROOF. I f  p ~( q, then  q - p z K and p ] q - p, hence 

O.)q ~ COp -}- COq _p ~ cop. 

I f  coq => cop, then coq - o~p is a max imal  measure,  r(coq - cop) = q - p, and 

I[ coq - cop [1 = I[ q [[ - [] P U < [1 q - p [I. i t  fol lows tha t  coq - cop = co~_p, hence 

coq ~ fop "[- coq_p 

and p [ q - p .  

I am indebted to F. Perdrizet  for  a correct ion in the p r o o f  of  the fol lowing 

result. 

LEMMA 5.5. I f  J is a compact convex subset of K,  and It is a maximal  measure 

on K with supp # ~_ J, then # is maximal  when regarded as a measure on J. 

PROOF. We m a y  assume tha t  It is a p robabi l i ty  measure  on J .  Suppose tha t  

v is ano ther  probabi l i ty  measure  on J with g(s) < v(s) for  all  s e S(J) .  Then 

#(t) < v(t) for  all  t E S(K) ,  and regarding # and v as measures  on K ,  /~-< v. 

Since # is max ima l  on K ,  # = v. 

LEMMA 5.6. I f  0 # p ~ K,  then supp cop ~_ E(Hp). 

PROOF. Since co, = II P Ilcop,~,p,~ for  p # 0, we m a y  assume tha t  U cop II = 11 p II = 1. 

Let  B1, . . . ,BN be disjoint Borel  sets with K = U Bn and cn = cop(Bn)# 0. Let  

Pn = cop IBn be the restriction o f  cop to Bn, 0n the probabi l i ty  measure  pn/Cn, and 
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p, = r(O,). Let II be the "discrete approximation" Y~c,f(p,). We claim that 

supp # __c Hr. 

We have that p = Z c,,p,,. Since IIP,: ]I < 1 for each n and 

1 =  !lpll <= Zc ,  llp°Jl, 

we have that ]1P, {I = 1 for each n. On the other hand, 

1 = ]! p II --< II c.p. II + II 1i z z ck II pk li = 1, 
hence c,p, -< p. From B 3 and B2 (see §4), c,p, ~ Hp and p, ~ Hp, hence supp/l < H v. 

We have that there is a net of "discrete approximations" p~ converging weak* 

to co x (see [3, Prop. I. 2.3]). Since Hp is compact, supp wp _ H r. From Lemma 5.5 

co x is maximal as a measure on Hv, hence supp cox ~- E(Hp) (see [21, p. 30]). 

Dauns and Hofmann proved that continuous bounded functions on the structure 

space of  a C*-algebra act as "multipliers" for the C*-algebra. The following is an 

analogous result for Lindenstrauss spaces (see [11, Th. 2.1; 3, §7] for parallel 

results). Let C~(E(K)) be the bounded, structurally continuous real functions on 

E(K). Note that such functions f must be even, i.e., f ( - p ) =  f ( p ) f o r  all p ~ E(K). 

THEOREM 5.7. Suppose that V is a Lindenstrauss space, and K is the closed 

unit ball of V*. I f  f E Cs(E(K)) and v ~ V, then there exists an element w ~ V with 

w(p) = f ( p ) v ( p ) f o r  all p ~ E(K). 

PROOF. We first extend f t o  a function on Z -  {0}. I f  q ~ Z -  {0}, and p, e E(K) 

converges to q, then fixing Po E E(Hq), we have that p, converges to Po structurally 

(Proposition 4.7), hence f (p , )  converges to f(Po). The latter value does not depend 

on the net p,. Thus we define f ( q )=  f(Po). From [24, p. 100, Problem D], it follows 

that f is continuous on Z - {0}. We define f(0) = 0 (this will usually introduce a 

discontinuity). Since f is bounded and even, the same is true for f .  

I f  v E V, v(0) = 0, hence j'v is a continuous odd function on Z. To show that it is 

the restriction of an element w of V, it suffices to show that p(fv) =f (p )  v(p) for 

each p E Z and maximal probability measure # representing p (Corollary 3.3) 

Since fv  is odd, 

I~(fv) = odd #(fv) 

= 2(odd /0  + (fv) 

= c%(fO. 
The set 

Yp = {q ~Z:  (fv)(q) =f (p)v(q)}  
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is closed and contains EH(p) since f is constant on the latter set (this is clear from 

the definition of  f ) .  From Lemma 5.6, i f p  ~ 0, 

supp coy ~- E(Hp)- ~_ Yv" 

It follows that for any p, 

#(fv) = f (p )  co.(v) = f (p)  v(p). 

We say that a subset D of K is symmetrically dilated if for each p z D, E(Hp) ~_D. 

The following result will play an important role in Sections 6 and 7. 

THEOREM 5.8 (see [11, Trt. 3.3]): Suppose that V is a Lindenstrauss space and 

that D is a compact symmetrically dilated subset of K. Then the closed convex 

hull H = c(D) is a biface in K, and D c7 E(K) is structurally closed. 

PROOF. The second assertion will follow from the first since H cTE(K) 

= D t7 E(K) (see [21, p. 9]). For  the first it suffices to show that if p z H, then 

supp cop ___ H, since then for p # 0, 

1 
snppcov/llvl I = supp ~ coy - H, 

hence p/llpl[ = r(co,,/H,,~O~H. Xr q <p, coq<= ~,,, (Corollary 5.4), hence suppcoq 

_cH and q~H.  

Let p = r(#) where # ~ P(D) (e.g., let # be maximal on H), and v a maximal 

measure on K with # -< v. From Theorem 2.1, we may find nets of  probability 

measures/~,, v, converging weak* to # and v, respectively, with 

i = 1  

n., 

v~ = X c~X~, 
i = 1  

where 2~ is maximal on K with r(2, ~) = p,~. W e  have 

covr = 2(odd 21) +, 

and from Lemma 5.6, 

supp +opt _~ E(Hv;, ). 

Since D is symmetrically dilated, E(Hv+~)~ D, and 

supp(odd),~) ~ O ~ H. 
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Thus 2 

supp(odd v~) ~ H, 

and since odd v~ converges to odd v, 

supp(odd v) __ H 

(see [7, Ch. III. §2, Prop. 6]). Since COp = 2(odd v) +, supp COp~ H. 

COROLLARY 5.9 (see 1-13, P. 26]). Let F be a subset of E(K). Then the 

following are equivalent: 

(1) F is structurally closed. 

(2) F is relatively weak* closed in E(K), and ff is a symmetrically dilated set. 

PROOF. (1) ~ (2). Let F = E(H), H a closed biface. Since F = H C3 E(K), F 

is weak* relatively closed. If  p ~ F, then H v ~ H and 

E(H~) _ E(H) = F, 

hence /v is dilated. 

(2) =~ (1). We have from Theorem 5.8 that F = F C3E(H) is structurally 

closed. 

COROLLARY 5.10. I f  D ~_ E(K) is a weak* compact symmetric set, then it 

is structurally closed. 

COROLLARY 5.11 (see [-22, PROV. 3.3]). Let f be a bounded real function on 

E(K). Then the following are equivalent: 

(1) f is continuous in the structure topology, 

(2) f has a weak* continuous extension f on Z-{0) such that f (q)  = f (p)  for 

all q ~ Z - { 0 } ,  and pEE(Hq). 

PROOf. (1) =~ (2). This was shown in the proof of Theorem 5.7. 

(2) , (1). For any closed set F _  R, 

D = (q ~ Z - (0}: f(q) ~ e }  u (0} 

is symmetrically dilated and weak* closed. 

Letting H = c(D), 

n c~ g ( K )  = o n E(K) 

= {p ~ E(K) : f (p)  ~ F} 

is ~ructurally closed. 
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6. G-spaces 

A Banach space Vis said to be a G-space if  it can be mapped isometrically onto 

a subspace A of C(X), X compact  Hausdorff, of  the form 

A = { f~  C(X):f(x~)  = cj(y~)} 

where x,, y~ ~ X and - 1 < c, < 1. The G-spaces are Lindenstrauss spaces, and 

may be characterized as the Banach spaces V such that given vl, v2, v3 e Vthere is 

an element v4 ~ V such that 

(6.1) v4(p) = min vi(p) + max vi(p) 
1 < i < 3  1<_<_i<3 

for all p ~ E(K), where K is the closed unit ball of  V* [19, Th. 2]. v 4 is, of  course, 

determined by its values on E(K). 

(6.1) may be used to introduce various operations into V. Define for real scalars 

~, fl, y, the intermediate value Int(e, fl,7) to be that member of  the set {e,~,y} 

which lies between the other two values. Noting the identity 

(6.2) Int(a,/3, ?) = c~ + ~ + ? - [min(cq/~, 7) + max(a,/3, 7)] 

we may define Int(vl,v2,v3) for vl,vz, v3 e Vto  be that  element of  Vwith  

(6.3) Int(vl, v2, va) (p) = Int(vl(p), v2(.p), v3(p)) 

for p ~ E(K). We also introduce the notation 

etA/8 = Int(e, /3, 0) = V/~, 0t ___< 0, ~ __< 0, 

0, e/~ =0 ,  

and for vl, v2 ~ V, we let 

vl A v2 = Int(vl,  vz, 0). 

We say that  an element p ~ V* is a G-character if for all v~,v2 E V, 

(6.4) p(vl Av2) = p(vl)Ap(v2). 

LEM~tA 6.1. Let V be a Lindenstrauss space, K the closed unit ball of V*, D 

a compact subset of E(K) with D c3 aD = (2L I f f  is a real continuous function 

on D, then it has an isometric extension to an element of V. 

PROOF. Let Q be the closed convex hull of  D. From [16, Corollary], Q is a face 

in K. That  argument also shows that  Q is a simplex, since if # and v are measures 

on E(Q) = D with the same resultant, # - v is an even measure with support in 
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the asymmetric set D, hence # - v = 0. Since E(Q) is closed, we may ex t end f  to a 

continuous affine function a on Q (see [25, Satz 13]). Extend a to a function a o on 

the set [0, 1] Q by ao(~p) = ~ ao(p). To prove ao is well-defined, it suffices to show 

that for all p E Q, ]1 p l] = 1, since then ~p = flq, q ~ Q implies that a = fl, hence 

p = q, or a = 0. I f  p E Q and H p H < 1, then drawing the chord through p and 

arbitrary point q e K, p is a proper convex combination of q and another point, 

hence q e Q and K = Q. This contradicts the fact that aD (~ E(Q)= ~ .  It is 

clear that ao is affine on [0, 1] Q. 

The linear span lin Q is weak* closed ([17, Lemma 2.1]), hence if we let 

QO = {v e V: v I Q = 0), we have lin Q ~- (v/Q°) *. From [17, Lemma 2.1], the 

closed unit ball of  lin Q is the convex hull of Q and aQ. The hypotheses of  [15, 

Lemma 4.3] are thus satisfied and we may extend ao to a weak* continuous linear 

function b on lin Q. Since ][ hi] is determined by the values of b on c(Q.,-Q), we 

have [] b [] = [] a II = Ii/ll. Defining g(p) = ]]ft] for all p e K, we may now apply 

the Lazar-Lindenstrauss-Edwards Extension Theorem [17, Th. 2.1] to obtain an 

isometric extension of  b to an element of V. 

[,EMMA 6.2. I f  V is a separable G-space, then the G-characters are the 

elements in RE(K). 

PROOF. From (6.3) we have that each p e E(K) is a G-character. Since we have 

ca h cp = c(~ A/~) 

for any scalar c, it follows that cp is a G-character. 

Conversely suppose that p is a G-character. We may assume that IIp I] = 1. 

i t  suffices to show that the closed interval [ - p , p ]  is a bfface in K, since then 

p eg(K) (Lemma 4.5). Thus it suffices to show that if q-~ p or q-~ - p ,  then 

q e l - p , p ] ,  i.e., p(v)=0 implies q(v)=0. Since - p  is also a G-character, it 

suffices to assume p, and that p(v) = 0, where II. IL = 1. 

Since V is separable, E(K) is a G~ set, and wp(E(K)) = 1. Since cop A acop = 0 

(see §5) we may find a Borel set B ~ E(K) with cop(B)= 1 and B t~ aB = ~ .  

Given ~ > 0, choose a compact subset D of  B with ~op(D) >_ 1 - e. 

(v I D)+ is a continuous function on D and from Lemma 6.1 it may be extended 

isometrically to an element v + of  V. Let v- = v + - v. We next "disjoint" v + and 

v- by defining 

W + ~ /)+ - -  V + j ~ O - ,  

W -  ~ V -  - -  V + J k ,  V - .  
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I f  r e E(K) and v+(r), v-(r) have the same sign, then since v+(r)Xv-(r) is either 

v+(r) or v - ( r ) ,  we have either w+(r) = 0 or  w-(r) = 0. Since w+(r) has the Same 

sign as v+(r) and the same is true for  w-( r ) ,  v-(r), we conclude tha t  for  all r E E(K), 

w+(r) and w-(r) have opposi te  signs, i.e., w + )v w -  = 0. I f r  ~ D, v+(r) = max(v(r),O) 

and v - ( r ) =  m a x ( - v ( r ) ,  0), hence (v+JVv-)(r)= 0 and 

~ + 1 o  = v + l D  = (r io)+,  

w-lv=(v+ - o l o - - ( v l o ) - ,  

We have tha t  

W + - - W -  ~ V + - - V -  ~ V  

hence p(w +) - p ( w - ) =  O. Since p is a G-character,  

p(w+)Ap(w - )  = p(w+ A w - )  = o. 

Thus  p(w +) and p(w-) have opposi te  signs, and we conclude 

p(w +) = p (w- )  = o, 

i.e., 

%(w +) = % ( w - )  = o. 

On the other  hand  since q -<  p, toq < ogp (Corol lary  5.4). We cannot  conclude 

mq(w +) = c % ( w - ) =  0 since w + and w -  are not  positive. However  we do have 

tha t  they are positive on D. 

We have 

II w+ 11--< tlv+ II = II (v I D) + I[ -< IIv II = 1, 

II w-II--II w+ - v  II =< 2, 
and since COp(K - D) < e, 

0 =< %(w+ [O) ____ %(w+ I D) _-< e, 

0 ___< %(w- l D) ____ %(w- [o) ____ 2~, 

Ico~(vla)l  < 2e, 

Iq(OI--I ~o~(ol- -< 2~ + [I v I[o,~(g - D)=< 3e. 

Since ~ > 0 was arbi t rary,  q(v) = O. 

THEOREM 6.3. Suppose that V is a Lindenstrauss space, and consider the 

statements: 
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(1) The structure topology on E,(K) is Hausdorff. 

(2) The closure Z of E(K) is contained in ro, 1]E(K). 

(3) V is a G-space. 

One has that (1) =~ (2) =~ (3). If  V is separable, then (3) =~ (1). 

PROOF. (1)=~ (2). Suppose that p~Z and that p~[O,1]E(K). Then 

Hp ~ r -p / l ]  p ][, p/][ p II] since equality would imply pill p II ~E(K) It is clear 

that E(Hp) must contain linearly independent q, r e E(K). Let p~ be a net in E(K) 

converging to p. Then from Proposition 4.7, p~ converges in the structure topology 

to both q and r. It  follows that E,(K) is not Hausdorff. 

(2) =~ (3). From Corollary 3.3, V is isometric to A,(Z), the continuous odd 

affine functions on Z. If  0 # z ~ Z, then 

1 +  H zll z 1 -  jj zlr ( -  z) z~- - -  - -  --]- - -  
2 I] ZIr 2 rlzrl 

hence z is the resultant of the probability measure 

From (2), the latter measure is extremal. I f  v is any other extremal probability 

measure with r(v) = z, then odd gz = odd v. It follows that a function f e  C,(Z) is 

affine if and only if 

fez)= #z(f)= II z IIf(z/llz II). 
A may thus be identified with the f e  C(Z) satisfying f ( -  z) = - f ( z )  for all z e Z, 

as well as the above relations. 

(3) ~ (2) (V separable). It is clear from (6.4) that the G-characters of  V 

form a closed set. Since they contain E(K), (2) follows from Lemma 6.2. 

(2) =~ (1) (V separable). Define a map ¢ of Z - {0} onto E~(K) by 

• (p) = (plil p II,-pltl p ti) 
and let R be the corresponding equivalence relation pRq if  ¢(p) = q)(q). It suffices 

to show that ¢ induces a homeomorphism of Z - {0} IR onto E,(K), and that R 

is a closed subset of (Z - {0}) x (Z - {0}), since then we may apply [8, p. 112, 

Exercise 15] to conclude E,(K) is Hausdorff. It is trivial to prove that R is closed 

(see [11, Lemma 3.7]). For the quotient result it suffices to prove that a set F in 

E~(K) is closed if and only if ¢ - l ( F )  is closed in Z - {0}. 

If  F is closed in E:(K), its inverse image FI  in E(K) is structurally closed, and 

there is a closed biface H in K with F1 = E(H). We have that ¢-~(F) __c [0, lIE(H). 
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Suppose that p~ is a net in ~ -  I(F) converging to q • Z - {0}. Then q E H implies 

q/lIqll•Fx, hence qb(q)= {__. q/][q[l}•F. 
Conversely suppose that ~ -  I(F) is closed in Z - {0}. I f  p • ~ -  I(F), p ~ 0, then 

+_p/llpll•z- o , 
0(_+ p/ll p []) = o(p) • F, 

and 

e(H ) = { _ p/ll p If} , -  

Thus O-I(F) U{0} is closed and symmetrically dilated. We have that 

H = c(~-l(F)L9 {0}) is a closed biface, and 

E(H) = [-O-'(F) U {0}] ~E(K) .  

Thus F consists of the sets {p, - p }  with p •E(H), and F is closed. 

7. The Gleit-Taylor Theorem 

Throughout this section, V will be a Lindenstrauss space, K the closed unit ball 

of V*. The methods of this section are essentially due to Gleit and Taylor [13;22-]. 

The key result used by both Gleit and Taylor is the following partial converse 

to Proposition 4.7 (the full converse is false--see [22, §2.10]). We recall that a 

point p in a topological space is a cluster point of a net p~ if there is a subnet of p~ 

converging to p. 

LEMMA 7.1. Suppose that p, is a sequence in E(K) converging weak* to q • K. 

Then the structure cluster points of p, all lie in E(Hq). 

PROOF. For each integer n, the set 

D. = { +Pk: k > n} uHq 

is symmetrically dilated and weak*-closed. From Theorem 5.8 it follows that 

D, hE(K)  = { +. p,: k > n} WE(He) 

is structurally closed. If  p, is a subnet of p. that converges structurally to 

p • E(K), p, must eventually lie in D. n E(K), hence p • D, n E(K). Taking the 

intersection of  these sets, p •E(Hq). 

For each p • E(K) we define 

F(p) = {q • z :  peE(nq)}, 

A(p) = ~ {/V: N • gffp}, 

where ~ p  is the collection of structural neighborhoods of p in E(K), and ?7 is the 

weak* closure of N. If  S is a subset of E(K), we let F(S) = Up~sF(p). 
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LEMMA 7.2. A(p) consists of all q ~K such that there exists a net p ~ E ( K )  

with p~-+ p structurally and p~-~ q weak*. 

PROOF. Suppose that p , ~  p structurally and p ~  q weak*. If  N is a structure 

neighborhood of p, eventually p, e N, hence q ~ ~,  i.e., q ~ A(p). I f  q ~ A(p), let 

~fq be the neighborhoods of  q in the weak* topology. Order .A/'p x Nq by 

(N1, G1) > (N2, G2) if Nt  -~ N2 and G 1 _~ G2. For  each N e ~rp, G E fgq choose 

Pm.~) ~ N c~ G. Then P(N.G) is a net converging to p structurally and to q weak*. 

COROLLARY 7.3. For each peE(K) ,  F(p)__csA(p) . 

PROOF. This is immediate from Proposition 4.7. 

COROLLARY 7.4. I f  G is a weak* open set in K and G ~_ A(p), p ~ E(K), then 

G ~ E ( K )  is a structure neighborhood of p. 

PROOF. If  G r3 E(K) is not a structure neighborhood of p, let p, ~ E(K) - G 

converge structurally to p. Choosing a subnet we may assume that p~ converges 

weak* to q e K. Then q c A ( p ) _  G, hence eventually p ~  G, a contradiction. 

LEMMA 7.5. If V is separable and D ~_ E(K) is structure compact, then 

b ~_ F(D). 

PROOF. If  q ~b,  then since K is metrizable, there is a sequence p~ ~ E(K) con- 

verging weak* to q. Since D is structure compact, Pn has a cluster point p. From 

Lemma 7.1, q ~F(p), hence q ~F(D). 

A topological space X is locally compact at p if each neighborhood o f p  contains 

a compact neighborhood of p. 

THEOREM 7.6. Suppose that V is a separable, Lindenstrauss space, K the 

closed unit ball of V*, and p a point in E(K). Then the following are equivalent: 

(1) E(K) has a countable basis of structure open sets at p. 

(2) E(K) is structurally locally compact at p. 

(3) F(p) = A(p). 

PROOF. (1) * (3). If  q ~ A(p), let p~ be a net in E(K) with p~ -~ p structurally, 

p ~  q weak* (Lemma 7.2). Since by hypothesis there are countable bases in E(K) 

and K at p and q for the structure and weak* topologies, respectively, we may 

select a sequence p, from the p~ with p,-~p structurally and p, ~ q weak*. From 

Lemma 7.1, q sF(p) .  

(2) ~ (3). If  V is locally compact, we have from Lemma 7.5 
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A(p) = n {37: U ~ ,/V'p, N compact) 

__= n {r(N):  N ~ ./Up} 

_= r (p) .  

To justify the last inclusion, suppose q ~ F(p). Then p ¢ E(Hq), and letting N = E(K) 

- E(Hq), p' q~ E(Hq) for all p '  ~ N, i.e., q ~ F(N). 

(3) => (1). Let G, be a basis of  weak* open sets for K, which is closed under 

finite unions. I f  N is a structure open set containing p, let E(K) - N = E(H), H a 

closed biface. Since H is symmetrically dilated, q ~ H  implies E(Hq)~_ E(H), 

hence q ¢ F(p), i.e., F(p) n H = ZI. Thus (2) implies that A(p) and H are disjoint 

compact subsets of  K. Thus there is a G. with A(p) _ G,, and G, n H = ~ ,  and 

G, n E(K) is a structure neighborhood of  p by Corollary 7.4. 

(3) => (2). Let N be a structure open set containing p, and H a closed biface 

with E(K) - N = E(H). As in the proof  of (3) => (1), A(p) n H = ~ .  It  suffices 

to construct a convex weak* continuous function f on K such that f l  H =  0 and 

f [  A(p)>  e for some e > 0, since then the set 

{q ~E(K): f (q)  > e} 

will be a compact neighborhood of  p (Proposition 4.8 and Corollary 7.4.) 

Since H is the unit ball of  lin H, and H is weak* closed, the same is true for 

lin H (see [9, Ch. IV, §2, Th. 5].) Letting W = V*/lin H have the weak* quotient 

topology, the quotient map ~b of  V* onto W is weak* continuous, and one has 

that the compact set D = ~b(A(p)) does not contain 0. An obvious covering argu- 

ment shows that there exist continuous linear functions g l , ' " , g ,  for which 

g = gl V "'" V g, is larger than zero on D. Then f = g o gb has the desired pro- 

perties. 

In the proof  of  (3) ~> (1), G, was chosen to be a weak* basis for all of  K. We 

may thus conclude. 

THEOREM 7.7. Suppose that V is a separable Lindenstrauss space, and K is 

the closed unit ball of V*. Then the following are equivalent for the structure 

topology: 

(1) E(K) is first countable. 

(2) E(K) is second countable. 

(3) E(K) is locally compact. 
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8. Further Remarks 

8.1. A simple argument will give a representation theorem for a complex Banach 

space V. Let K be the closed unit ball of V, and let T be the complex numbers of 

modulus 1. Then V may be identified with AT(K,C), the continuous complex 

atthae functions on K satisfying f(~p) = ~f(p) for all c~ ~ T. The Lazar criterion 

for Lindenstrauss-spaces has an obvious analogue. If  f is a continuous complex 

function on K, define 

odd r f(p) = f o:f(~-'p)d~ 

where integration is with respect to Haar measure on T. If/x E P(K), define oddr# 

by 

oddr/x(f) = #(oddrf). 

We say that K is a T-simplex, and Vis T-simplicial, if given maximal #, v ~P(K) 

and r(#) = r(v), it follows that oddr# = oddT v. One finds that such a space V 

may be identified with AT(Z,C), the functions f whose real and imaginary parts 

lie in A(Z), and satisfy f(~p) = ~f(p). Presumably much of the preceding theory 

will generalize if  one appropriately defines "T-faces" ha K. 

These ideas might also be useful in the study of the action of a group G on a 

convex set K. I f  L i s a  representation of G on a Banach space W one might wish to 

consider the space AT(K , W) of affme functions f :  K--+ W satisfying f(ctp) 

= L(~)f(p) for ~ s G. 

8.2. The M-space version of Theorem 6.3 is valid in the non-separable case. 

This is due to a particularly simple proof for (3) :> (1) [12, Th .2.5]. A more 

thorough understanding of the operation ~ might lead to a corresponding result 

for G-spaces. 

8.3. We conjecture that a Banach space V is a G-space if and only if a finite 

non-empty intersection of balls in Vmust be centrally symmetric. This is the case 

if V is a Lindenstrauss space. 

8.4. I f  V is a C,-space, then given u, v, w ~ V there exists a unique element 

uvw ~ V satisfying 

(8.1) (uvw) (p) ---- u(p)v(p)w(p), p e E(K) 

Define a Co-character to be an element p ~ V* satisfying (8.1). It would seem 

probable that the Co-characters are just the elements of E(K) n {0}, and that a 

Lindenstrauss space Vis a C,-space if and only if E(K) ~ E(K) t_) {0}. 
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8.5. We suspect that there exists a remnant of  "M-structure"  in V that would 

enable one to directly characterize the Lindenstrauss spaces, and discuss ideal 

theory in V. This would probably involve a Riesz decomposition property, that 

would be related to the "restricted four-two intersection proper ty"  (see [18, 

Th. 6.1]). 

Notes  added in proo f  (January 30, 1971). 

1. Using rather different approaches, H. Fakhoury and P. Taylor have 

independently settled §8.2 by showing that the conditions (1)-(3) of  Theorem 6.3 

are equivalent without the assumption of  separability. 

2. H. Fakhoury has shown that  the conjectures of  §8.3 are true. 

3. E. Alfsen and the author have recently succeeded in developing a structure 

theory for arbitrary non-ordered Banach spaces. In this context, we have found 

analogues of  the Edwards-Lazar-Lindenstrauss Extension Theorem [17, Th. 2.1], 

the structure topology, and the Dauns-Hofmann Theorem (see Theorem 5.7). 

In addition, we have found an intrinsic characterization of  the " idea ls"  in such 

spaces. 
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